P4TrafficTool: Automated Code Generation
for P4 Traffic Generators and Analyzers

Deepanshu Jindal
deepanshu.jindal.cs116@cse.iitd.ac.in
II'T Delhi

CCS CONCEPTS
« Networks — Programmable networks.
1 INTRODUCTION

The flexibility to design next generation networks faster
with new protocols (e.g. Geneve [7]) and applications (e.g.
in-network telemetry) is a key driver behind the rise of pro-
grammable dataplanes and the P4 programming language [14].
New protocols and applications invariably require new packet
headers (or protocol layers). The P4 programming language [3]
allows new packet headers to be expressed in the form of
header definitions and their “binding” with other headers
to be expressed as a parser specification. P4 programs with
custom headers are then easy to compile and deploy on pro-
grammable hardware. However, once deployed, the testing
of these P4 deployments, especially in production settings,
requires traffic generators and traffic analyzers that support
these new headers.

Commonly used tools such as WireShark [20] do not sup-
port these new headers out of the box. To address this issue,
the current approach is to write new plugin code for exten-
sible traffic generators and analyzers so that these tools can
generate and analyze traffic with the new headers. However,
writing the plugin code can be complex, time consuming and
error-prone. For example, to write the plugin code for Wire-
Shark [20], a P4 developer would require to learn the Lua
programming language [13] and the WireShark dissector
plugin framework. Furthermore, the plugin code needs to be
modified and re-written every time the header fields change
during the development cycle of a protocol or application.
Maintaining an up-to-date plugin code thus inflicts a signifi-
cant overhead for a P4 developer as the headers evolve over
time. While it is relatively simple to write plugin code for
the Python-based Scapy [19], we found that Scapy cannot
support testing fast 10+ Gbps hardware systems, e.g. testing
a microburst monitoring system such as BurstRadar [11]. In
such instances, a DPDK-based [5] tool such as MoonGen [6]

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).

SOSR 19, April 3—4, 2019, San Jose, CA, USA

© 2019 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-6710-3/19/04.
https://doi.org/10.1145/3314148.3318047

Raj Joshi
rajjoshi@comp.nus.edu.sg
National University of Singapore

Ben Leong
benleong@comp.nus.edu.sg
National University of Singapore

or Pcap++ [18] will be required. These tools in turn require
the developer to write relatively complex plugin code.

Also, while working with P4, we found that existing plu-
gin code generators have limited functionality. For example,
while the P4 WireShark Dissector Generator [17] can gener-
ate plugin code for WireShark, it supports only a single new
header in the header stack and only at the end of the stack.
P4pktgen [15] generates input packets to cover all paths of
a P4 program, but it does not provide any plugin code for a
traffic generator or analyzer.

In this paper, we present P4TrafficTool, a new plugin code
generation tool that automatically generates the plugin code
required to support new headers in P4 programs for a number
of common traffic generators and analyzers. P4TrafficTool
currently generates plugin code for WireShark, Scapy, Moon-
Gen and Pcap++, and is easily extensible. P4TrafficTool al-
lows these target tools to be used for testing P4 programs with
new headers on software (bmv2 [2]) and hardware targets
(Barefoot Tofino [1]) thereby accelerating the development
of new protocols and applications.

2 HOW P4TRAFFICTOOL WORKS

To generate the plugin code for different target tools, P4Traffi-
cTool needs the description of new headers and the infor-
mation about how these new headers are linked to other
headers in the protocol stack. To obtain this information
from a P4 program in a structured format, we use the open
source P4 reference compiler (p4c) [16] to obtain a High
Level Intermediate Representation (HLIR). Using the HLIR
representation, P4TrafficTool identifies the headers that are
not metadata and extracts the header descriptions. It then
generates the data structures for these headers in the format
required by each target tool. Next, we determine the correct
data types for the header fields. For example, for Pcap++, a
uint8_t type would be used for a padded 4-bit field whereas
uint16_t would be used for a 16-bit field. P4TrafficTool tries
to determine if any of the identified headers are standard
headers (Ethernet, IPv4, TCP, etc.) and provides an option
to use in-built implementations of these headers instead of
adding new plugin code. This avoids code redundancy and
also improves performance if optimized implementation for
such headers is available in the target tool(s). For example,
the plugin code for WireShark is interpreted at run time and
is therefore slower than the compiled in-built code. Once
the header definitions are available, P4TrafficTool uses the

https://doi.org/10.1145/3314148.3318047

Table 1: Lines of code generated by P4TrafficTool

Scapy WireShark MoonGen Pcap++

P4 Program’ (Python) (Lua) (Lua) (C/C++)
basic_postcards 33 116 360 274
basic_tunnel 22 79 150 101
hula [12] 47 150 304 211
linear_road [8] 120 411 1805 1317
mri 47 144 450 303
netcache [10] 100 189 1691 1221
netchain [9] 42 195 340 239
p4paxos [4] 26 118 207 152
qmetadata 47 172 450 338
src_routing 29 83 151 101

parser specification to construct a parser control graph which
is independent of the target tool. The parser control graph
encodes the possible transitions between the headers based
on the values of certain header fields. As an example, for
the Ethernet header, a value of the etherType field equal
to @xFFFF could denote a transition that the next header is
a new header foo. P4TrafficTool then translates the parser
control graph into header binding/mapping data structures
that are specific to the target tool(s). The final output of
P4TrafficTool is a set of files containing the generated code
for each target tool. For Pcap++ and MoonGen, P4TrafficTool
also provides the user with additional instructions and code
to properly integrate the plugin code with the common li-
brary files of the target tool.

P4TrafficTool is currently implemented with about 1400
lines of Python code and is available at https://git.io/fhnVe
(and open-sourced under MIT License). For Pcap++ and
MoonGen, P4TrafficTool also adds additional extensions to
support header fields with non-standard bit widths such as 24,
40, or 48. Since there are no data types available in C/C++ (for
Pcap++) or Lua (for MoonGen) to support fields with such
bit widths, P4TrafficTool defines its own data structures and
associated methods to handle such non-standard bit-width
fields. It also handles variable length header fields. Further,
P4TrafficTool transparently performs the endianness conver-
sion between the network and the host by providing users
with simple getter and setter functions in the plugin code.

3 EVALUATION

To evaluate how P4TrafficTool can save time for a P4 de-
veloper, we obtained? 10 different publicly available P4 pro-
grams that use new headers other than the standard TCP/IP
protocol stack, and generated the plugin code for the 4 sup-
ported target tools. The amount of plugin code generated by
P4TrafficTool for each target tool is shown in Table 1. These

1Some P4 programs are slightly adapted due to the limitations (§4)
2https://git.io/fhnaX

numbers suggest that P4TrafficTool would allow a P4 devel-
oper to avoid writing hundreds of lines of plugin code. The
savings are especially significant for MoonGen and Pcap++.
The automated generation of these headers will likely avoid
human error. We also found that P4TrafficTool works well
for P4 programs written for proprietary hardware such as
Barefoot Tofino [1].

4 LIMITATIONS AND FUTURE WORK

A packet starting with a header other than Ethernet and a
transition to the next header based on multiple header field
values is currently not supported. We are working on the
patches required to support such use cases. We are also plan-
ning to incorporate automatic code generation for checksum
calculation and verification. For now, the user can define ap-
propriate functions to compute the checksum header fields.
P4TrafficTool currently requires individual header fields to
be byte-aligned with appropriate padding to generate code
for Pcap++ and MoonGen. We plan to add data structure
support for non-byte-aligned fields.

REFERENCES

[1] Barefoot Tofino 2019. https://goo.gl/cdEK1E.

[2] Behavioral Model 2019. https://git.io/thnni.

[3] Pat Bosshart, Dan Daly, Glen Gibb, et al. 2014. P4: Programming
protocol-independent packet processors. SSIGCOMM CCR (2014).

[4] Huynh Tu Dang, Marco Canini, Fernando Pedone, et al. 2016. Paxos
made switch-y. SIGCOMM CCR (2016).

[5] DPDK 2019. https://dpdk.org

[6] Paul Emmerich, Sebastian Gallenmiiller, Daniel Raumer, et al. 2015.
MoonGen: A scriptable high-speed packet generator. In Proceedings of
IMC.

[7] Geneve 2019. https://goo.gl/4tuEby.

[8] Theo Jepsen, Masoud Moshref, Antonio Carzaniga, et al. 2018. Life in
the fast lane: A line-rate linear road. In Proceedings of SOSR.

[9] Xin Jin, Xiaozhou Li, et al. 2018. NetChain: Scale-Free Sub-RTT Coor-
dination. In Proceedings of NSDL

[10] Xin Jin, Xiaozhou Li, Haoyu Zhang, et al. 2017. NetCache: Balancing
key-value stores with fast in-network caching. In Proceedings of SOSP.

[11] Raj Joshi, Ting Qu, Mun Choon Chan, et al. 2018. BurstRadar: Practical
real-time microburst monitoring for datacenter networks. In Proceed-
ings of APSys.

[12] Naga Katta, Mukesh Hira, Changhoon Kim, et al. 2016. Hula: Scalable
load balancing using programmable data planes. In Proceedings of
SOSR.

[13] Lua Programming Language 2019. https://lua.org.

[14] Nick McKeown. 2017. Why Does the Internet Need a Programmable
Forwarding Plane? https://youtu.be/zR88NIg3n3g.

[15] Andres Nétzli, Jehandad Khan, Andy Fingerhut, et al. 2018. P4pktgen:
Automated test case generation for P4 programs. In Proceedings of
SOSR.

[16] P4 Reference Compiler 2019. https://git.io/fhnnX.

[17] P4 WireShark Dissector 2019. https://git.io/fhnXh.

[18] PcapPlusPlus 2019. https://git.io/fhnZL.

[19] Scapy 2019. https://scapy.net.

[20] Wireshark 2019. https://wireshark.org.

https://git.io/fhnVe
https://git.io/fhnaX
https://goo.gl/cdEK1E
https://git.io/fhnni
https://dpdk.org
https://goo.gl/4tuEby
https://lua.org
https://youtu.be/zR88Nlg3n3g
https://git.io/fhnnX
https://git.io/fhnXh
https://git.io/fhnZL
https://scapy.net
https://wireshark.org

	1 Introduction
	2 How P4TrafficTool Works
	3 Evaluation
	4 Limitations and Future Work
	References

